Guaranteed Non-Orthogonal Tensor Decomposition via Alternating Rank-1 Updates
نویسندگان
چکیده
In this paper, we provide local and global convergence guarantees for recovering CP (Candecomp/Parafac) tensor decomposition. The main step of the proposed algorithm is a simple alternating rank-1 update which is the alternating version of the tensor power iteration adapted for asymmetric tensors. Local convergence guarantees are established for third order tensors of rank k in d dimensions, when k = o ( d ) and the tensor components are incoherent. Thus, we can recover overcomplete tensor decomposition where the tensor rank k is larger than the dimension d. We also strengthen the results to global convergence guarantees under stricter rank condition k ≤ βd (for arbitrary constant β > 1) through a simple initialization procedure where the algorithm is initialized by top singular vectors of random tensor slices. Furthermore, the approximate local convergence guarantees for p-th order tensors are also provided under rank condition k = o ( d ) . The guarantees also include tight perturbation analysis given noisy tensor.
منابع مشابه
On the Tensor Svd and Optimal Low Rank Orthogonal Approximations of Tensors
Abstract. It is known that a high order tensor does not necessarily have an optimal low rank approximation, and that a tensor might not be orthogonally decomposable (i.e., admit a tensor SVD). We provide several sufficient conditions which lead to the failure of the tensor SVD, and characterize the existence of the tensor SVD with respect to the Higher Order SVD (HOSVD) of a tensor. In face of ...
متن کاملOrthogonal Low Rank Tensor Approximation: Alternating Least Squares Method and Its Global Convergence
With the notable exceptions of two cases — that tensors of order 2, namely, matrices, always have best approximations of arbitrary low ranks and that tensors of any order always have the best rank-one approximation, it is known that high-order tensors may fail to have best low rank approximations. When the condition of orthogonality is imposed, even under the modest assumption that only one set...
متن کاملOn the Tensor SVD and the Optimal Low Rank Orthogonal Approximation of Tensors
It is known that a higher order tensor does not necessarily have an optimal low rank approximation, and that a tensor might not be orthogonally decomposable (i.e., admit a tensor SVD). We provide several sufficient conditions which lead to the failure of the tensor SVD, and characterize the existence of the tensor SVD with respect to the Higher Order SVD (HOSVD). In face of these difficulties t...
متن کاملRobust polynomial time tensor decomposition
Tensor decomposition has recently become an invaluable algorithmic primitive. It has seen much use in new algorithms with provable guarantees for fundamental statistics and machine learning problems. In these settings, some low-rank k-tensor A ∑r i 1 a ⊗k i which wewould like to decompose into components a1, . . . , ar ∈ n is often not directly accessible. This could happen for many reasons; a...
متن کاملA constructive arbitrary-degree Kronecker product decomposition of tensors
We propose the tensor Kronecker product singular value decomposition (TKPSVD) that decomposes a real k-way tensor A into a linear combination of tensor Kronecker products with an arbitrary number of d factors A = ∑R j=1 σj A (d) j ⊗ · · · ⊗ A (1) j . We generalize the matrix Kronecker product to tensors such that each factor A j in the TKPSVD is a k-way tensor. The algorithm relies on reshaping...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1402.5180 شماره
صفحات -
تاریخ انتشار 2014